

State Hygienic Laboratory

Whole genome sequencing - past, present, and future of foodborne outbreak investigations

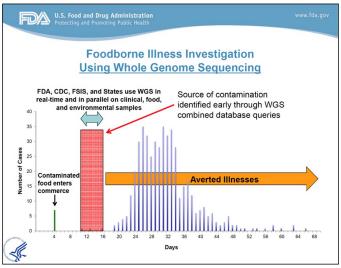
Valérie Reeb, Ph.D.

Assistant Research Scientist, SHL Molecular division

Iowa Food Safety Task Force Meeting April 11, 2023

Overview

- → Outbreak source tracking
- → Whole genome sequencing basic
- → Public sequence database
- → Iowa outbreak investigations
- → Antibiotic resistance
- → Culture independent subtyping
- → SHL capabilities



Outbreak Source Tracking

- - Identify pathogen in clinical samples
 - Case investigation by epidemiologist
 - Track food source between cases
 - Identify pathogen in food samples
- → Whole Genome Sequencing Outbreak Investigation
 - FDA GenomeTrakr Network
 - CDC PulseNet

Outbreak Source Tracking

Step 1. Collect pathogen samples from

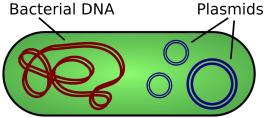
- Sick people (medical professionals)
- Food (FDA, USDA, states and local agencies)
- Productions facilities, restaurant, farms, etc. (Federal, State and Local investigators)

Step 2. Sequence pathogens whole genome

Step 3. Compare Genomic Sequences

Action

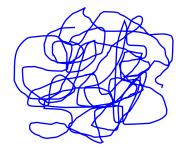
- Partners work to prevent more illnesses
- Determine how the pathogen got into the food supply chain



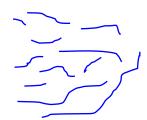
Genomic data

Each bacteria can be identified by its unique DNA sequence

One long sequence of 130,000 – 15,000,000 nucleotides (A, T, C, G)



Whole Genome Sequencing (WGS)


Bacterial isolate culture

Random fragmentation

Sequencing

GCCGTAGATCGCCTCTAGCGTACAGTC

ATTGCCCGATAGATCGTTCGCGAAATG

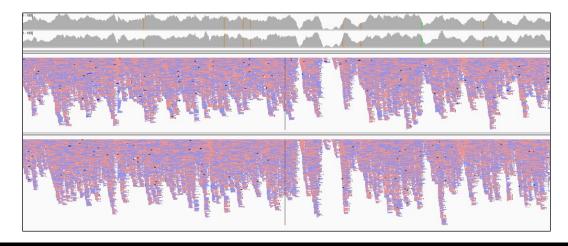
CTCGTAAGCCGATCGCTAGCTAGTCTG

TCGATCGCTAGCTAGTCTGGTAACGTA

~ 1 million reads per isolate

Generate sequence reads

MiSeq sequencer


Reads assembly

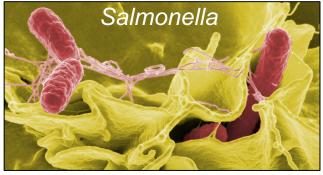
Re-create the whole bacterial DNA sequence

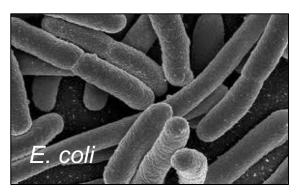
CGATCGGTAGCCAAGTCGCT

CCAAGTCGCTAGATTCGGAT AGTCGCTAGATTCGGATAAC CGCTAGATTCGGATAACCTG

AGGTTCGATGCTAGTGCGTTAGATCGATCGGTAGCCCAAGTCGCTAGATTCGGATAACCTG

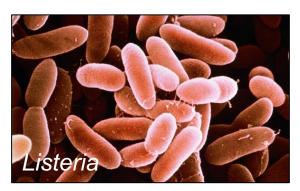
Genome comparison

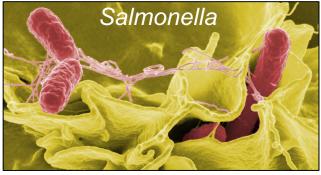

Listeria : AGGTTCGATGCTAAGTGCAGTACCGTATAACG...

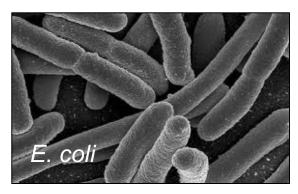

Salmonella: AGGTCCGGTGCTAAGTGCAGTACCGTATAACG...

E. Coli : AGGTCCGATGCTATGTGCCGTACCCTATAACG...

Patient : AGGTTCGATGCTAAGTGCAGTACCGTATAACG...

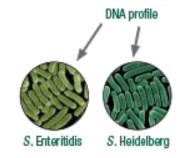


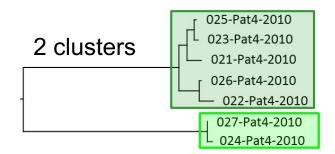


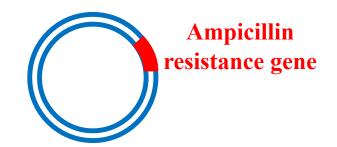


Genome comparison

Listeria	AGGTTCGATGCTAAGTGCAGTACCGTATAACG
Salmonella	AGGTCCGGTGCTAAGTGCAGTACCGTATAACG
E. Coli	AGGTCCGATGCTATGTGCCGTACCCTATAACG
Patient bacteria	AGGTTCGATGCTAAGTGCAGTACCGTATAACG

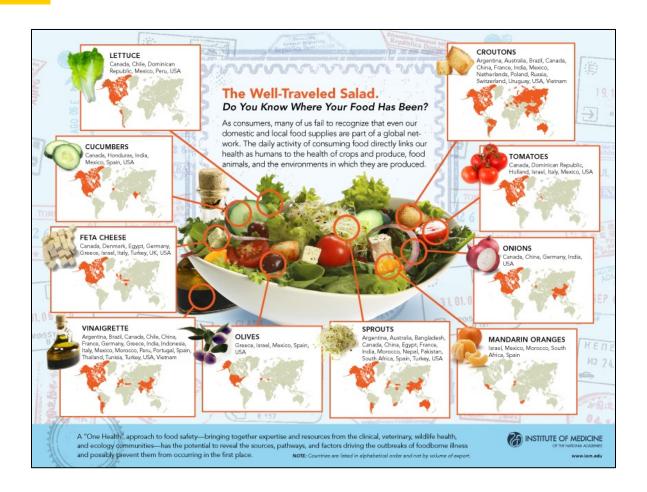






Advantages of WGS

- → Improved identification of bacteria
 - e.g., Salmonella Serotyping
- → Better discrimination between isolates
- → Improved outbreak detection
 - Link clinical cases
 - Find source earlier
 - Solve more outbreaks while still small
- → Identification of antimicrobial resistance genes and virulence factors



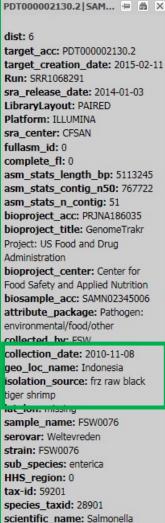
WGS limitation

What is the source of contamination?

NCBI Pathogen Detection database

- → Sequences repository for foodborne pathogens
 - 1.4 Millions sequences (182,000)
 - 78 species
- → Associated metadata
 - Geographical location
 - Source
 - Environmental or clinical
- → Link isolates from food or the environment to human illness
- → Larger database = faster source detection

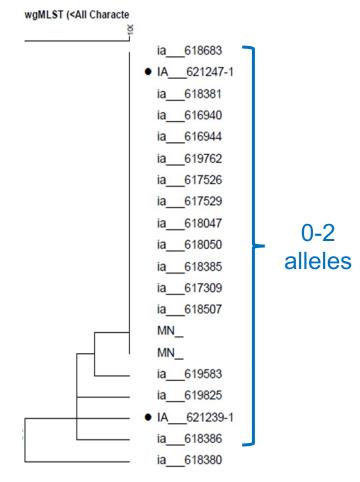
Species	Isolate sequenced
Salmonella enterica	526,819
E.coli and Shigella	302,223
Staphylococcus aureus	95,579
Campylobacter jejuni	85,184
Klebsiella pneumoniae	77,527
Listeria monocytogenes	56,413
Streptococcus pneumoniae	38,139
Enterococcus faecium	28,526
Neisseria gonorrhoeae	26,978
Pseudomonas aeruginosa	25,139
Clostridioides difficile	23,909
Acinetobacter baumannii	23,737
Streptococcus pyogenes	20,471
Vibrio parahaemolyticus	10,082


As of April 6, 2023

NCBI Pathogen detection database

Cluster results within 1 week of submission

enterica subsp. enterica


2018 Multistate outbreak of Salmonella Typhimurium in Chicken Salad

→ Outbreak summary

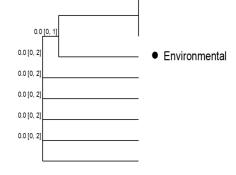
- 264 cases 8 states (240 in IA)
- 87% reported eating chicken salad

Timeline

- Increased # of Salmonellosis cases
- 4 patients reported eating chicken salad from the same grocery store
- Voluntary recall of the chicken salad
- Manufacture producing chicken salad was identified
- Chicken salad from 7 stores tested at SHL
- 2 presumptive positives IDed by PCR
- 60 samples collected at the manufacture (only FDA areas) – no positives
- Both positives from the chicken salad and clinical isolates closely related by WGS

Environmental

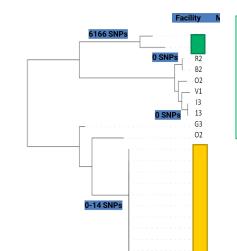
2019 E. coli O103 traced to Sprout


- → Outbreak summary
 - 22 cases from 10 lowa counties

→ Timeline

- Outbreak identify through routine surveillance testing on 12/18/2019
- Sub-sandwich franchise owner and sprout owner are notified
- Spent irrigation water and 16 clover sprout samples were collected
- All clinical and environmental samples were identified as E. coli O103 by PCR
- WGS shows close relationship of two environmental and clinical samples
- Related to an E. coli O103 multistate outbreak in Feb 2020

0-2 alleles


Environmental

Persistence overtime

- → Environmental *Listeria* in Iowa
 - 3,394 environmental samples collected between 2013-2020
 - 18 facilities
 - 15.8% positivity (136 samples)
 - WGS for 56 isolates
 - 9 sequence types identified

WGS help us distinguish between repeated introductions versus persistent overtime

2 isolates 6,166 SNPs = independent introduction

46 isolates
0-14 SNPs
June 2018 to
March 2020

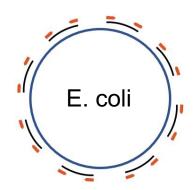
=
persistence
overtime

Antibiotic resistance pathogens in food

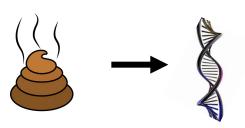
- → Statistics
 - 2.8 millions AR infections per year
 - 1 in 4 infections caused by food and animals
 - 35,000 deaths
- → Spread of AR bacteria in food
 - Consumption of animal products
 - Animal feces in surrounding environment
 - Fruits and vegetables in contact with soil, water or fertilizer containing animal feces
- → Strategic approach to reduce infection
 - Develop and enhance tools for conducting surveillance
 - Expand tracking of environmental sources contributing to spread (One Health)
 - Promoting responsible use of antimicrobials
 - Development of new products (new antimicrobials, vaccines, etc)

Antibiotic resistance pathogens in food

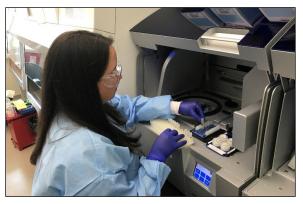
- → Automatic detection in clinical and environmental samples
 - Pathogen Detection
 - AMRFinderPlus tool
 - Identify antimicrobial genes from pathogen genome sequence
- → Wastewater surveillance
 - Target specific AR genes

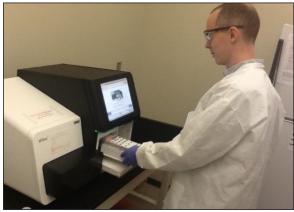

pmrB Y358N

Culture Independent Subtyping


- → Identify pathogens directly from samples (fast TAT)
 - Amplicon sequencing (target specific)
 - Targeted pathogens identification
 - Targeted pathogen serotype
 - Targeted AR and virulence genes
 - Low cost
 - Shotgun metagenomics (Sequence everything)
 - All pathogens sequenced
 - All AR and virulence genes sequenced (but origin unknown)
 - Advantageous for discovery
 - Expensive

Highly Multiplex Amplicon Sequencing (HMAS)





SHL Capabilities

- → Over 9,000 bacteria and 20,000 SARS-CoV-2 viruses since 2015
- → Bacteria sequenced: Foodborne pathogen, Legionella, Carbapenem-resistant bacteria, Staphylococcus, Streptococcus, Mycobacterium, Neisseria, etc.
- → Eight technicians trained for genome sequencing
- → Dedicated spaces for sequencing, different sequencing instruments (Illumina MiSeq, Nextseq, Oxford Nanopore MinIon) and Liquid handler (EpMotion, Clear DX)
- → Bioinformatics pipelines installed on the UI HPC

Acknowledgment

SHL genomic team

- Jeff Benfer
- Kris Eveland
- Wesley Hottel
- Murphy Keller
- Gina Kline
- Erik Twait
- Anna Yakos
- Arielle Watson
- Kristen Zanon

SHL Environmental Micro

- Ryan Jepson
- Cathy Lord

Epidemiology support

- Johnson County Public Health Dept.
- Iowa Dept. of Public Health.

Environmental sampling

- Johnson County Public Health Dept.
- Iowa Dept. of Inspection and Appeals
- · Iowa Dept. of Agriculture

Funding and support

- CDC (ELC)
- APHL
- FDA Genome Trakr
- University of Iowa CHEEC

State Hygienic Laboratory

Thank you